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Introduction

Mobile Data Crunch:
• Explosive growth in mobile data demand by rapid development

and adoption of rich multimedia applications

Heterogeneous Networks (HetNets):
• Overlay traditional large cells with dense deployment of small

cells (SCs)
• Increased frequency reuse
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Small Cells

Increase system capacity:
• Low transmit power increases spatial reuse
• Densely deployed to offload traffic from macrocells

Backhaul is a major challenge:
• Impractical and expensive to have "macro" quality links to

core network
• Backhaul capacity is limited

How do we efficiently utilize backhaul to maximize data
rates of users?
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Resource Allocation for Small Cells

User Association:
• Which APs serve which users?

Spectrum Allocation:
• Who gets subchannel?
• How often can we reuse spectrum?

Interference Management:
• How much power to transmit per subchannel?

Limited Backhaul Capacity:
• How much of an AP’s backhaul capacity should be allocated

to an user?
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Coordinated Multipoint (CoMP)

• APs cooperate to improve throughput via managing
interference and resource allocation

• Joint scheduling and beamforming: user data at serving AP

• Joint transmission/processing: user data at available at
every AP

• Backhaul constraints studied mainly in terms of reducing
overhead costs (Huang et al., 2013; Tolli et al., 2009)
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Resource Allocation with Backhaul Constraints

Recent works account for backhaul capacity:
• (Chowdhery et al., 2011): effective heuristic algorithm

accounts for backhaul with overhead

• (Marić et al., 2011): wireless backhaul for Picocells with
backhaul scheduling and power control

• (Agustin et al., 2011): decentralized algorithm for power and
backhaul constrained AP

Upper bounds:
• (Kim et al., 2013): upper bounds for system utility in backhaul

constrained APs
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Contribution

Resource allocation for backhaul capacity constrained:

• Extend results of Multiuser Waterfillling with Crosstalk (Yu,
2007)

• Maximizing Weighted Sum Rate (WSR) Objective

• User association, spectrum allocation and power control done
jointly

• Convergence to locally optimal solutions

• Computationally efficient iterative waterfilling solution
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System Model

System
• Single tier small cell network in downlink OFDMA transmission
• M access points (APs), K users, N orthogonal subchannels

Objective
Weighted Sum Rate:

K∑
k=1

αkRk (1)

Notation
mkn denotes the link from AP m to user k over subchannel n.
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Data Rate Model

• Achieved transmission rate on link mkn:

Rmkn = log2

(
1 +

PmknGmkn

Imkn + σ2

)
, (2)

where Pmkn, Gmkn and Imkn are allocated power, channel gain
and interference respectively

• User k can be served by multiple APs on different
subchannels, the total rate for user k is:

Rk =
∑
m,n

Rmkn (3)
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Interference Model

Interference Imkn is function of all other transmissions on
subchannel n:

Imkn =
K∑

k ′=1,
k ′ ̸=k

Pmk ′nGmkn +
M∑

m′=0,
m′ ̸=m

K∑
k ′′=0

Pm′k ′′nGm′kn. (4)

Interfering transmissions from own AP and other APs are
accounted for.
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Access Point Constraints

AP m is subject to a sum-power and backhaul constraint:

Ptotal ,m =
∑
k,n

Pmkn ≤ Pmax ,m, ∀ m, (5)

Rtotal ,m =
∑
k,n

Rmkn ≤ Bmax ,m, ∀ m, (6)

Pmkn ≥ 0,∀m, k, n. (7)

Signaling overhead is ignored in backhaul capacity computation.
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User Scheduling

• User k is scheduled by AP m on subchannel n if Pmkn > 0

• User Scheduling Property: only one user may be scheduled
per subchannel by an AP

K∏
k=1

Pmkn = 0, ∀m, n, (8)

this constraint is not enforced explicitly but a valid solution
must have this property.

• Our inteference model allows us to solve scheduling problem
efficiently without using Integer Programming.
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Problem Formulation

maximize
K∑

k=1

αkRk (9)

subject to Ptotal ,m =
∑
k,n

Pmkn ≤ Pmax ,m, ∀ m,

Rtotal ,m =
∑
k,n

Rmkn ≤ Bmax ,m, ∀ m,

Pmkn ≥ 0,∀m, k, n.
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Karush-Kuhn-Tucker Conditions

Rearrange to have explicit equation for power:

Pmkn =

(
αk − νm
tmkn − λm

− Imkn + σ2

Gmkn

)+

, (10)

where:

• αk is the priority weight of user k

• λm is the power dual variable for AP m

• νm is the backhaul dual variable for AP m

• tmkn is the price associated with using link mkn

• (x)+ denotes max(x , 0).
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Link Prices t

Encapusulate incentive to use a particular link mkn:

tmkn =
∑
k ′ ̸=k

(αk ′ − νm)Gmk ′n

Imk ′n + σ2 · Pmk ′nGmk ′n

Pmk ′nGmk ′n + Imk ′n + σ2 (11)

+
∑
m′ ̸=m

∑
k ′

(αk ′ + νm′)Gmk ′n

Im′k ′n + σ2 · Pm′k ′nGm′k ′n

Pm′k ′nGm′k ′n + Im′k ′n + σ2 ,

when t ′s converge, the KKT system is solved.
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Coupled Constraints and Complementary Slackness

• For fixed tmkn and Imkn:

Pmkn = f (λm, νm) (12)
Rmkn = g (Pmkn) = g (f (λm, νm)) , (13)

Pmkn and Rmkn are strictly monotonic functions of λm and νm!

• Complementary Slackness: only the active constraints have
non-zero dual variable
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Single Bisection: Two Constraints

• Both constraints can be satisfied by using bisection on either
dual variable

• Set νm = 0 and use bisection search on λm to waterfill on the
active constraint

• Find λm that satisfies any of the following:

1 Pmax,m − Ptotal,m ≤ ϵ

2 Bmax,m − Rtotal,m ≤ ϵ

3 λm ≤ ϵ (AP m is unconstrained)

• When both constraints are tight, the waterlevel is the same.
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Algorithm Sketch

Improved Iterative Waterfilling with Backhaul (IIWFB)
• Outer Loop: Update tmkn

• Inner Loop: Each infeasible AP
• Measure Imkn

• Compute λm, update P

• Terminate when tmkn & WSR converge and KKT conditions
are satisfied
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Convergence

• Difficult to prove in general for iterative waterfilling algorithms

• Can be forced by slowing down update of tmkn

tnewmkn = βtoldmkn + (1 − β)t̂mkn (14)

for some 0 < β < 1 and t̂mkn is computed from current P

• Converges quickly in simulations even with larger problem sizes
(e.g M = 20, K = 30, N = 25) which are difficult to solve by
subgradient method
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Scheduling Property

• Occasional convergence to P and t that don’t satisfy this
property due to numerical issues

• When at converged tmkn, if the property is not satisfied:

1 Fix scheduled users k as

Pm0,k,n0 =

{
Pmax
m0,n0

, if k = k0.

0, otherwise.
(15)

2 Repeat algorithm until convergence

3 Simulations show the achieved objective is at least as good as
the before
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Complexity and Performance

• Efficient inner loop bisection on single dual variable can satisfy
both constraints

• Prices t and interference model allows fast computation of
user schedules, spectrum allocations and power control

• Intermediate steps guarantee power feasibility, backhaul
feasibility guaranteed when interference terms converges

• Solves KKT system directly: locally optimal solutions for
non-convex problem
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Numerical Simulation

Setup
• APs and users distributed randomly in d2

area square area
• All users have same priority αk = 1, ∀k
• Fix Pmax ,m = 24 dBm and vary Bmax ,m

• Fading and noise model described in paper

Simulation
Benchmark against Greedy scheme:

• Assign subchannel n to AP-user pair with best channel
• Each AP computes λm and P

Two scenarios considered:
• Standard deployment: M = 3,K = 10,N = 16, darea = 500 m

• Dense deployment: M = 20,K = 30,N = 25, darea = 100 m
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Weighted Sum Rate (Standard)
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Figure 1: Plot of Weighted Sum Rate versus Bmax,m.
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Backhaul Utilization (Standard)
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Figure 2: Plot of Percent Backhaul Used versus Bmax,m.
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Frequency Reuse Factor (Standard)
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Figure 3: Plot of Frequency Reuse Factor versus Bmax,m for SNRdB = 10.
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Weighted Sum Rate (Dense)
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Figure 4: Plot of Weighted Sum Rate versus Bmax,m for SNRdB = 3.
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Backhaul Utilization (Dense)
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Figure 5: Plot of Percent Backhaul Used versus Bmax,m for SNRdB = 3.
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Remarks and Future Work

Remarks:
• Under severely limited backhaul capacity can achieve globally

optimum objective (full backhaul utilization)

• Each AP can perform inner loop asynchronously

• Updating prices tmkn requires all CSI and power allocations
known at a central node

Next Steps:
• Investigate distributed schemes to reduce overhead needed and

allow for decentralized implementations
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Waterfilling Equations

Pmkn =

(
αk − νm
tmkn − λm

− Imkn + σ2

Gmkn

)+

, (16)

Pmax ,m ≥
∑
n,k

(
αk − νm
tmkn − λm

− Imkn + σ2

Gmkn

)+

, (17)

Bmax ,m ≥
∑
n,k

log

(
1 +

PmknGmkn

Imkn + σ2

)
. (18)

5 / 10



Lagrangian
We form the Lagrangian and set the derivative to 0:

L (P,ν,λ) =
K∑

k=1

αk

∑
∀m,n

log

(
1 +

PmknGmkn

Imkn + σ2

)

+
M∑

m=1

νm

Bmax ,m −
∑
∀k,n

Rmkn


+

M∑
m=1

λm

Pmax ,m −
∑
∀k,n

Pmkn

 (19)

∂L (P,ν,λ)

∂Pmkn
= 0 (20)

where λm and νm correspond to AP m’s dual variables for power
and backhaul constraints.
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Algorithm

1: Initialize P, tmkn

2: loop until tmkn converges
3: loop until P converges
4: for AP m = 1 · · ·M do
5: Calculate Imkn according to (4).
6: Obtain λm via bisection search in Algorithm 2.
7: Calculate P using (10).
8: end for
9: end loop

10: Update tmkn according to (12).
11: end loop
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Algorithm: Bisection Search

1: Fix tmkn and Imkn.
2: Initialize λm,min, λm,max , λm.
3: loop until Bmax ,m − Rtotal ,m ≤ ϵ or Pmax ,m − Ptotal ,m ≤ ϵ
4: Calculate Pmkn from (10) and update Ptotal ,m.
5: Calculate Rmkn from (2) and update Rtotal ,m.
6: if Ptotal ,m > Pmax ,m or Rtotal ,m > Bmax ,m then
7: λm,min = λm.
8: λm = (λm,min + λm,max)/2.
9: else

10: λm,max = λm.
11: λm = (λm,min + λm,max)/2.
12: end if
13: end loop
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Related Works

(Chowdhery et al., 2011)
• Effective heuristic algorithm for dynamic link selection which

accounts for backhaul capacity and overhead costs.
• Performs user scheduling, spectrum allocation, power control

and backhaul feasibility steps separately
• (Mehryar et al., 2012) extends this to multiple antennae

(Marić et al., 2011)
• Studied novel architecture wireless backhaul nodes for picocell
• Backhaul scheduling and power control steps are done

separately
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Related Works (cont’d)

(Agustin et al., 2011)
• Proposed decentralized algorithm for power and backhaul

capacity constrained BS
• Uses two dimensional search to obtain dual parameters for

power and backhaul feasibility
(Kim et al., 2013)

• Proposed framework for deriving upper bounds on utility for
backhaul constrained networks

• Augmented Lagrangian based algorithm for near optimal
performance

Backhaul Delay
• Not considered in this work, studied in such as (Pantisano

et al., 2012; Cui et al., 2013).
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