Joint User Association and Resource Allocation in Small Cells with Backhaul Constraints

Zhe Cui Joint Work With Raviraj Adve

University of Toronto zcui@comm.utoronto.ca

March 20, 2014

Introduction

Mobile Data Crunch:

 Explosive growth in mobile data demand by rapid development and adoption of rich multimedia applications

Heterogeneous Networks (HetNets):

- Overlay traditional large cells with dense deployment of small cells (SCs)
- Increased frequency reuse

Small Cells

Increase system capacity:

- Low transmit power increases spatial reuse
- Densely deployed to offload traffic from macrocells

Backhaul is a major challenge:

- Impractical and expensive to have "macro" quality links to core network
- Backhaul capacity is limited

How do we efficiently utilize backhaul to maximize data rates of users?

Resource Allocation for Small Cells

User Association:

Which APs serve which users?

Spectrum Allocation:

- Who gets subchannel?
- How often can we reuse spectrum?

Interference Management:

• How much power to transmit per subchannel?

Limited Backhaul Capacity:

 How much of an AP's backhaul capacity should be allocated to an user?

Coordinated Multipoint (CoMP)

- APs cooperate to improve throughput via managing interference and resource allocation
- Joint scheduling and beamforming: user data at serving AP
- Joint transmission/processing: user data at available at every AP
- Backhaul constraints studied mainly in terms of reducing overhead costs (Huang et al., 2013; Tolli et al., 2009)

Resource Allocation with Backhaul Constraints

Recent works account for backhaul capacity:

- (Chowdhery et al., 2011): effective heuristic algorithm accounts for backhaul with overhead
- (Marić et al., 2011): wireless backhaul for Picocells with backhaul scheduling and power control
- (Agustin et al., 2011): decentralized algorithm for power and backhaul constrained AP

Upper bounds:

• (Kim et al., 2013): upper bounds for system utility in backhaul constrained APs

Contribution

Resource allocation for backhaul capacity constrained:

- Extend results of Multiuser Waterfillling with Crosstalk (Yu, 2007)
- Maximizing Weighted Sum Rate (WSR) Objective
- User association, spectrum allocation and power control done jointly
- Convergence to locally optimal solutions
- Computationally efficient iterative waterfilling solution

System Model

System

- Single tier small cell network in downlink OFDMA transmission
- M access points (APs), K users, N orthogonal subchannels

Objective

Weighted Sum Rate:

$$\sum_{k=1}^{K} \alpha_k R_k \tag{1}$$

Notation

mkn denotes the link from AP m to user k over subchannel n.

Achieved transmission rate on link mkn:

$$R_{mkn} = \log_2 \left(1 + \frac{P_{mkn} G_{mkn}}{I_{mkn} + \sigma^2} \right), \tag{2}$$

where P_{mkn} , G_{mkn} and I_{mkn} are allocated power, channel gain and interference respectively

 User k can be served by multiple APs on different subchannels, the total rate for user k is:

$$R_k = \sum_{m,n} R_{mkn} \tag{3}$$

Interference Model

Interference I_{mkn} is function of all other transmissions on subchannel n:

$$I_{mkn} = \sum_{\substack{k'=1,\\k'\neq k}}^{K} P_{mk'n} G_{mkn} + \sum_{\substack{m'=0,\\m'\neq m}}^{M} \sum_{k''=0}^{K} P_{m'k''n} G_{m'kn}.$$
(4)

Interfering transmissions from own AP and other APs are accounted for.

Access Point Constraints

AP m is subject to a sum-power and backhaul constraint:

$$P_{total,m} = \sum_{k,n} P_{mkn} \le P_{max,m}, \forall m,$$
 (5)

$$R_{total,m} = \sum_{k,n} R_{mkn} \le B_{max,m}, \forall m,$$
 (6)

$$P_{mkn} \ge 0, \forall m, k, n. \tag{7}$$

Signaling overhead is ignored in backhaul capacity computation.

User Scheduling

- User k is scheduled by AP m on subchannel n if $P_{mkn} > 0$
- User Scheduling Property: only one user may be scheduled per subchannel by an AP

$$\prod_{k=1}^{K} P_{mkn} = 0, \ \forall m, n, \tag{8}$$

this constraint is not enforced explicitly but a valid solution must have this property.

 Our inteference model allows us to solve scheduling problem efficiently without using Integer Programming.

Problem Formulation

maximize
$$\sum_{k=1}^{K} \alpha_k R_k$$
 (9)
subject to
$$P_{total,m} = \sum_{k,n} P_{mkn} \leq P_{max,m}, \forall m,$$

$$R_{total,m} = \sum_{k,n} R_{mkn} \leq B_{max,m}, \forall m,$$

$$P_{mkn} \geq 0, \forall m, k, n.$$

Karush-Kuhn-Tucker Conditions

Rearrange to have explicit equation for power:

$$P_{mkn} = \left(\frac{\alpha_k - \nu_m}{t_{mkn} - \lambda_m} - \frac{I_{mkn} + \sigma^2}{G_{mkn}}\right)^+,\tag{10}$$

where:

- α_k is the priority weight of user k
- λ_m is the power dual variable for AP m
- ν_m is the backhaul dual variable for AP m
- t_{mkn} is the price associated with using link mkn
- $(x)^+$ denotes max(x,0).

Encapusulate incentive to use a particular link *mkn*:

$$t_{mkn} = \sum_{k' \neq k} \frac{(\alpha_{k'} - \nu_m) G_{mk'n}}{I_{mk'n} + \sigma^2} \cdot \frac{P_{mk'n} G_{mk'n}}{P_{mk'n} G_{mk'n} + I_{mk'n} + \sigma^2}$$
(11)
+
$$\sum_{m' \neq m} \sum_{k'} \frac{(\alpha_{k'} + \nu_{m'}) G_{mk'n}}{I_{m'k'n} + \sigma^2} \cdot \frac{P_{m'k'n} G_{m'k'n}}{P_{m'k'n} G_{m'k'n} + I_{m'k'n} + \sigma^2},$$

when t's converge, the KKT system is solved.

Coupled Constraints and Complementary Slackness

• For fixed t_{mkn} and I_{mkn} :

$$P_{mkn} = f\left(\lambda_m, \nu_m\right) \tag{12}$$

$$R_{mkn} = g(P_{mkn}) = g(f(\lambda_m, \nu_m)), \qquad (13)$$

 P_{mkn} and R_{mkn} are strictly monotonic functions of λ_m and ν_m !

 Complementary Slackness: only the active constraints have non-zero dual variable

Single Bisection: Two Constraints

- Both constraints can be satisfied by using bisection on either dual variable
- Set $\nu_m=0$ and use bisection search on λ_m to waterfill on the active constraint
- Find λ_m that satisfies any of the following:
 - 1 $P_{max,m} P_{total,m} \le \epsilon$
 - 2 $B_{max,m} R_{total,m} \le \epsilon$
 - 3 $\lambda_m \le \epsilon$ (AP m is unconstrained)
- When both constraints are tight, the waterlevel is the same.

Algorithm Sketch

Improved Iterative Waterfilling with Backhaul (IIWFB)

- Outer Loop: Update t_{mkn}
- Inner Loop: Each infeasible AP
 - Measure I_{mkn}
 - Compute λ_m , update **P**
- Terminate when t_{mkn} & WSR converge and KKT conditions are satisfied

Convergence

• Difficult to prove in general for iterative waterfilling algorithms

• Can be forced by slowing down update of t_{mkn}

$$t_{mkn}^{new} = \beta t_{mkn}^{old} + (1 - \beta)\hat{t}_{mkn}$$
 (14)

for some $0 < \beta < 1$ and \hat{t}_{mkn} is computed from current ${m P}$

• Converges quickly in simulations even with larger problem sizes (e.g $M=20,\ K=30,\ N=25$) which are difficult to solve by subgradient method

Scheduling Property

- Occasional convergence to P and t that don't satisfy this property due to numerical issues
- When at converged t_{mkn} , if the property is not satisfied:
 - \bigcirc Fix scheduled users k as

$$P_{m_0,k,n_0} = \begin{cases} P_{m_0,n_0}^{max}, & \text{if } k = k_0. \\ 0, & \text{otherwise.} \end{cases}$$
 (15)

- 2 Repeat algorithm until convergence
- 3 Simulations show the achieved objective is at least as good as the before

Complexity and Performance

 Efficient inner loop bisection on single dual variable can satisfy both constraints

- Prices t and interference model allows fast computation of user schedules, spectrum allocations and power control
- Intermediate steps guarantee power feasibility, backhaul feasibility guaranteed when interference terms converges
- Solves KKT system directly: locally optimal solutions for non-convex problem

Numerical Simulation

Setup

- APs and users distributed randomly in d_{area}^2 square area
- All users have same priority $\alpha_k = 1, \ \forall k$
- Fix $P_{max,m} = 24 \ dBm$ and vary $B_{max,m}$
- Fading and noise model described in paper

Simulation

Benchmark against Greedy scheme:

- Assign subchannel n to AP-user pair with best channel
- Each AP computes λ_m and \boldsymbol{P}

Two scenarios considered:

- Standard deployment: M = 3, K = 10, N = 16, $d_{area} = 500$ m
- Dense deployment: $M = 20, K = 30, N = 25, d_{area} = 100 \text{ m}$

Weighted Sum Rate (Standard)

Figure 1: Plot of Weighted Sum Rate versus $B_{max,m}$.

Backhaul Utilization (Standard)

Figure 2: Plot of Percent Backhaul Used versus $B_{max,m}$.

Frequency Reuse Factor (Standard)

Figure 3: Plot of Frequency Reuse Factor versus $B_{max,m}$ for $SNR_{dB} = 10$.

Weighted Sum Rate (Dense)

Figure 4: Plot of Weighted Sum Rate versus $B_{max,m}$ for $SNR_{dB}=3$.

Backhaul Utilization (Dense)

Figure 5: Plot of Percent Backhaul Used versus $B_{max,m}$ for $SNR_{dB}=3$.

Remarks and Future Work

Remarks:

- Under severely limited backhaul capacity can achieve globally optimum objective (full backhaul utilization)
- Each AP can perform inner loop asynchronously
- Updating prices t_{mkn} requires all CSI and power allocations known at a central node

Next Steps:

 Investigate distributed schemes to reduce overhead needed and allow for decentralized implementations

Thank You!

- Y. Huang, C. W. Tan, and B. D. Rao, "Joint beamforming and power control in coordinated multicell: Max-min duality, effective network and large system transition," arXiv:1303.2774, Mar. 2013.
- A. Tolli, H. Pennanen, and P. Komulainen, "Distributed coordinated multi-cell transmission based on dual decomposition," in *IEEE Global Telecommunications Conference*, 2009. GLOBECOM 2009, 2009, pp. 1–6.
- A. Chowdhery, W. Yu, and J. M. Cioffi, "Cooperative wireless multicell OFDMA network with backhaul capacity constraints," in *Communications (ICC), 2011 IEEE International Conference on,* 2011, p. 1–6.
- I. Marić, B. Boštjančič, and A. Goldsmith, "Resource allocation for constrained backhaul in picocell networks," in *Information Theory and Applications Workshop (ITA)*, 2011, 2011, pp. 1–6.

References II

- A. Agustin, J. Vidal, O. Muñoz-Medina, and J. R. Fonollosa, "Decentralized weighted sum rate maximization in MIMO-OFDMA femtocell networks," in *GLOBECOM Workshops* (*GC Wkshps*), 2011 IEEE, 2011, p. 270–274.
- C. Kim, R. Ford, Y. Qi, and S. Rangan, "Joint interference and user association optimization in cellular wireless networks," arXiv preprint arXiv:1304.3977, 2013.
- W. Yu, "Multiuser water-filling in the presence of crosstalk," in *Information Theory and Applications Workshop, 2007*, 2007, p. 414–420.
- S. Mehryar, A. Chowdhery, and W. Yu, "Dynamic cooperation link selection for network MIMO systems with limited backhaul capacity," in *Communications (ICC), 2012 IEEE International Conference on,* 2012, p. 4410–4415.

- F. Pantisano, M. Bennis, W. Saad, M. Debbah, and M. Latva-aho, "On the impact of heterogeneous backhauls on coordinated multipoint transmission in femtocell networks," in *2012 IEEE International Conference on Communications (ICC)*, 2012, pp. 5064–5069.
- Y. Cui, V. K. N. Lau, and H. Huang, "Dynamic partial cooperative MIMO system for delay-sensitive applications with limited backhaul capacity," arXiv e-print 1307.2320, Jul. 2013.

Extra Slides

Waterfilling Equations

$$P_{mkn} = \left(\frac{\alpha_k - \nu_m}{t_{mkn} - \lambda_m} - \frac{I_{mkn} + \sigma^2}{G_{mkn}}\right)^+,\tag{16}$$

$$P_{\max,m} \ge \sum_{n,k} \left(\frac{\alpha_k - \nu_m}{t_{mkn} - \lambda_m} - \frac{I_{mkn} + \sigma^2}{G_{mkn}} \right)^+, \tag{17}$$

$$B_{\max,m} \ge \sum_{n,k} \log \left(1 + \frac{P_{mkn} G_{mkn}}{I_{mkn} + \sigma^2} \right). \tag{18}$$

We form the Lagrangian and set the derivative to 0:

$$\mathcal{L}(\boldsymbol{P}, \boldsymbol{\nu}, \boldsymbol{\lambda}) = \sum_{k=1}^{K} \alpha_{k} \sum_{\forall m, n} \log \left(1 + \frac{P_{mkn} G_{mkn}}{I_{mkn} + \sigma^{2}} \right)$$

$$+ \sum_{m=1}^{M} \nu_{m} \left(B_{max,m} - \sum_{\forall k, n} R_{mkn} \right)$$

$$+ \sum_{m=1}^{M} \lambda_{m} \left(P_{max,m} - \sum_{\forall k, n} P_{mkn} \right)$$
(19)

$$\frac{\partial \mathcal{L}(\boldsymbol{P}, \boldsymbol{\nu}, \boldsymbol{\lambda})}{\partial P_{mkn}} = 0 \tag{20}$$

where λ_m and ν_m correspond to AP m's dual variables for power and backhaul constraints.

Algorithm

```
1: Initialize P, t_{mkn}
 2: loop until t_{mkn} converges
       loop until P converges
3:
           for AP m = 1 \cdots M do
 4:
               Calculate I_{mkn} according to (4).
5:
6:
               Obtain \lambda_m via bisection search in Algorithm 2.
               Calculate P using (10).
7:
           end for
8:
9:
       end loop
       Update t_{mkn} according to (12).
10:
11: end loop
```

Algorithm: Bisection Search

```
1: Fix t_{mkn} and I_{mkn}.
 2: Initialize \lambda_{m,min}, \lambda_{m,max}, \lambda_{m}.
 3: loop until B_{max.m} - R_{total.m} \le \epsilon or P_{max,m} - P_{total,m} \le \epsilon
          Calculate P_{mkn} from (10) and update P_{total,m}.
 4:
          Calculate R_{mkn} from (2) and update R_{total,m}.
 5:
          if P_{total.m} > P_{max.m} or R_{total.m} > B_{max.m} then
 6:
 7:
               \lambda_{m \, min} = \lambda_{m}.
               \lambda_m = (\lambda_{m,min} + \lambda_{m,max})/2.
 8:
          else
 9:
               \lambda_{m,max} = \lambda_m.
10:
               \lambda_m = (\lambda_{m \min} + \lambda_{m \max})/2.
11:
          end if
12:
13: end loop
```

Related Works

(Chowdhery et al., 2011)

- Effective heuristic algorithm for dynamic link selection which accounts for backhaul capacity and overhead costs.
- Performs user scheduling, spectrum allocation, power control and backhaul feasibility steps separately
- (Mehryar et al., 2012) extends this to multiple antennae (Marić et al., 2011)
 - Studied novel architecture wireless backhaul nodes for picocell
 - Backhaul scheduling and power control steps are done separately

Related Works (cont'd)

(Agustin et al., 2011)

- Proposed decentralized algorithm for power and backhaul capacity constrained BS
- Uses two dimensional search to obtain dual parameters for power and backhaul feasibility

(Kim et al., 2013)

- Proposed framework for deriving upper bounds on utility for backhaul constrained networks
- Augmented Lagrangian based algorithm for near optimal performance

Backhaul Delay

• Not considered in this work, studied in such as (Pantisano et al., 2012; Cui et al., 2013).