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Abstract—Heterogeneous networks potentially provide signifi-
cant capacity gains by overlaying the traditional cellular network
with a layer of small cells (SCs) served by access points (APs).
However, the limited backhaul capacity of the SC APs, combined
with increased interference from neighboring cells, necessitates
careful resource allocation to realize the gains. In our work, we
consider maximization of the weighted sum rate in small cell
networks with carrier aggregation while enforcing a backhaul
constraint on each SC AP. We propose an efficient, waterfilling-
like, algorithm which converges to a locally optimal solution of
the non-convex optimization problem. This algorithm differs from
existing works by using a computationally efficient bisection-like
search that ensures the sum-power and sum-rate constraints at
each AP are satisfied via an one-dimensional search. An added
advantage is that this approach also allows for a decentralized
implementation.

I. INTRODUCTION

Based on dense deployments of access points, small cell
(SC) networks have shown great promise in meeting the rapid
growth in demand for mobile data [1], [2]. SC networks
augment the traditional cellular network by providing efficient
frequency reuse through decreasing distance between mobile
user equipment (UE) and the access point (AP). However with
transmissions from closely-spaced APs, interference needs to
be properly addressed and controlled to reap these benefits [3],
[4]. Furthermore, while traditional base stations (BSs) are
connected to the core network through a large capacity/low
delay backhaul link, SCs usually do not have that luxury: for
example femtocells are connected to the core network via a
internet connection which has significantly less bandwidth and
increased delay [5], [6].

In a parallel development, Coordinated Multipoint (CoMP)
has been proposed to manage inter-cell interference and in-
crease network-wide data rates [7]. CoMP refers to multiple
BSs coordinating transmissions to individual users via beam-
forming and resource allocation. CoMP, though, assumes that
the data for every user is available at every BS. In considering
the use of coordinated transmissions for SC networks, the
limited backhaul available becomes a crucial limitation. The
effect of backhaul constraints has been studied extensively in
the literature but mostly in the context of the cost of signaling
overhead that needs to be exchanged between cooperative
nodes: in both [8] and [9] downlink CoMP algorithms were
proposed that reduce the signaling needed.

Motivated by the need to manage interference and increase
data rates, this paper extends CoMP to dense SC networks. We
maximize the sum rate to a group of users for orthogonal fre-
quency division multiple access (OFDMA) networks that allow
for carrier aggregation while imposing a backhaul constraint.
Backhaul constraints with CoMP have been considered before,
e.g., capacity bounds and a rate/backhaul tradeoff in different
scenarios were studied in [10] which showed that significant
performance gains were possible even with a strongly limited
backhaul. In [11], the authors use stochastic geometry to
quantify the signaling overhead involved in cooperation. The
effect of backhaul delay was investigated in [12] & [13], an
issue not considered here.

Carrier aggregation allows for a user to be served by
different basestations on different sub-carriers [14], [15]. The
work in [16] showed that this provides significant gains over
restricting a user to be served by a single base station. There
are several works that deal with the effect of per cell sum
rate constraints. In [17], an effective heuristic algorithm is
proposed for dynamic link selection in a downlink OFDMA
network that considers both the sum rate constraints and
overhead constraints between cooperating cells. The spectrum
allocation, user scheduling, power control and backhaul fea-
sibility portions of the algorithm are done separately. In [18]
extend this to the multiple-antenna case.

An alternative backhaul architecture was studied in [19]
where wireless backhaul nodes for picocells was studied,
again the backhaul scheduling and power control steps are
done separately. A decentralized algorithm for the multi-
antenna scenario was studied in [20] where the algorithm
uses a two-dimensional search to obtain the dual parameters
corresponding with power and backhaul feasibility at each
base-station. The authors of [21] provide a framework for
deriving the upper bound on the utility in backhaul limited
networks and augmented Lagrangian method based algorithm
for near optimal performance.

In this work we analyze the weighted-sum user rate maxi-
mization problem in the downlink for backhaul constrained
single antenna OFDMA networks with carrier aggregation
and propose a computationally efficient decentralized algo-
rithm based on the approach of [22]. Our novel approach
jointly performs spectrum allocation, user scheduling, cell
association, power control and backhaul optimization with a



bisection search approach to determining the dual variables
to achieve both sum rate and sum power feasibility. This
provides significantly simpler implementation and computa-
tional complexity over traditional subgradient and augmented
Lagrangian approaches. The proposed algorithm solves the
equations imposed by the Karush-Kuhn-Tucker (KKT) system
directly and converges to a locally optimal solution.

II. SYSTEM MODEL

We consider the downlink of an OFDMA system with
N orthogonal subcarriers, M randomly distributed APs, and
K randomly distributed users. Each AP m is subject to
a sum power constraint Pmax,m and a sum rate constraint
Bmax,m over all subchannels and users. The APs and users are
distributed uniformly distribution throughout a geographical
square area with side length of darea.

The channel gain between AP m and user k on subchannel
n is denoted by Gmkn = |Hmkn|2 where Hmkn represents
the respective complex channel. We assume a block flat-fading
model on each subcarrier where the channel gain is constant.
Additionally, we assume perfect and instantaneous channel
state information (CSI) in this paper and also ignore the delay
and overhead needed to synchronize CSI between cells.

The channel model accounts for path loss and log-normal
fading. The path loss in dB between the kth user and mth AP
is given by the 3GPP model [23]:

γmk =max (15.3 + 37.6 log10 dmk, 37 + 20 log10 dmk)

+ qmkW + L, (1)

where dmk is the distance between user k and AP m in meters,
qmk is a random variable representing the total number of
internal walls between user k and AP m, W is the partition
loss of internal walls in dB, L is the penetration loss of an
outdoor wall in dB. Now, hmkn ∼ CN (0, 1) represents the
small-scale fading between user k and AP m on subchannel
n. The overall channel gain between user k and AP m on
subchannel n is given by

Gmkn, dB = γmk + 10 log10 |hmkn|2 + ψ, (2)

where ψ ∼ LN (µs, σs) represents log-normal shadowing.
For simplicity, the rate Rmkn in (bits/Hz) for the transmis-

sion on subchannel n from base station m to user k is the
determined by the Signal-to-Interference ratio (SINR) at the
receiver (user):

Rmkn = log2

(
1 +

PmknGmkn

Imkn + σ2

)
, (3)

where Pmkn is the transmit power for AP m to user k on
subchannel n and Imkn denotes the interference at the user
and σ2 is the additive white Gaussian noise power. Further,
the interference at the user is due to other transmissions by
the same AP and transmissions from other APs, i.e.,

Imkn =

K∑
k′=1, k′ ̸=k

Pmk′nGmkn +

M∑
m′=0, m′ ̸=m

K∑
k′′=0

Pm′k′′nGm′kn

(4)

Carrier aggregation (CA) allows each user to combine data
streams from different sources on the orthogonal subchannels.
This allows us to exploit user diversity and balance transmis-
sion loads across APs in the system. In a system limited by
a backhaul constraint, this flexibility is particularly useful. In
such a system, the aggregate rate achieved by user k is:

Rk =
∑
m,n

Rmkn, (5)

which is the sum of rates achieved over all subchannels from
all APs.

III. PROBLEM FORMULATION

We consider resource allocation to maximize the weighted
sum-rate (WSR) of all users in the downlink transmission:

maximize

K∑
k=1

αkRk (6)

subject to Ptotal,m =
∑
k,n

Pmkn ≤ Pmax,m, ∀ m, (7)

Rtotal,m =
∑
k,n

Rmkn ≤ Bmax,m, ∀ m, (8)

Pmkn ≥ 0,∀m, k, n. (9)

Here αk ≥ 0 are the user-specific weights, (7) represents
the usual sum-power constraint, (8) the backhaul constraint
while (9) enforces that the power used is always non-negative.
When the power Pmkn > 0, base station m will transmit over
subchannel n user k. Users which do not receive any power
are not scheduled in that given time-slot. The constraint that a
AP cannot serve two users on the same channel is not included
explicitly in the problem formulation but is automatically
enforced by the algorithm since such a situation is sub-optimal.
Carrier aggregation removes the constraint that each user must
be served by only one AP which allows for dynamic user
association. In this way, user association, user scheduling,
spectrum allocation and power control is solved in a joint
manner.

Equations (6)-(9) represent the WSR optimization problem
and solving this efficiently is the core contribution of this pa-
per. The optimization problem is well known to be non-convex
and here we expand on the Improved Iterative Waterfilling
algorithm of [22]. One advantage of solving the weighted sum-
rate problem is that by selecting appropriate weights αk, we
can introduce fairness measures such as proportional fairness
αk = 1/R̄k(T ), where R̄k(T ) is the rate allocated to user k
in the previous T time slots [24].

IV. LAGRANGIAN AND KKT CONDITIONS

We form the Lagrangian of the objective function with the
power and backhaul constraints. We denote as νm the dual
variable for the backhaul constraint of AP m, λm as the dual
variable for the power constraint of AP m. The vector of power
allocations for all triples (m, k, n) is denoted as P , also ν and
λ are the vectors for the respective dual variables.



∂L (P ,ν,λ)

∂Pmkn
=

αkGmkn

PmknGmkn + Imkn + σ2
−

∑
k′ ̸=k

(αk′ + νm)Gmk′n

Imk′n + σ2
· Pmk′nGmk′n

Pmk′nGmk′n + Imk′n + σ2

−
∑

m′ ̸=m

∑
k′

(αk′ − νm′)Gmk′n

Imk′n + σ2
· Pm′k′nGm′k′n

Pm′k′nGm′k′n + Im′k′n + σ2
− λm

= 0 (10)

tmkn =
∑
k′ ̸=k

(αk′ − νm)Gmk′n

Imk′n + σ2
· Pmk′nGmk′n

Pmk′nGmk′n + Imk′n + σ2
+

∑
m′ ̸=m

∑
k′

(αk′ + νm′)Gmk′n

Im′k′n + σ2
· Pm′k′nGm′k′n

Pm′k′nGm′k′n + Im′k′n + σ2

(11)

L (P ,ν,λ) =

K∑
k=1

αk

∑
∀m,n

log

(
1 +

PmknGmkn

Imkn + σ2

)

+

M∑
m=1

νm

Bmax,m −
∑
∀k,n

Rmkn


+

M∑
m=1

λm

Pmax,m −
∑
∀k,n

Pmkn

 (12)

By substituting the explicit equations for rates, we can analyze
the KKT conditions for local optimality. Taking the partial
derivative of the Lagrangian with respect to a specific power
Pmkn and set it to 0 we get (10).

By rearranging the results, we arrive at the following
expression:

αk − νm

Pmkn + Imkn+σ2

Gmkn

= λm + tmkn (13)

The term tmkn, given in (11), summarizes the effect of the
interference caused by user k being served by AP m on
channel n on the other users and subchannels. Now we have
an explicit expression to calculate the power Pmkn:

Pmkn =

(
αk − νm
tmkn − λm

− Imkn + σ2

Gmkn

)+

, (14)

where (x)
+ denotes max(x, 0).

By fixing Imkn and tmkn, the power Pmkn is completely
dependent on the dual variables νm and λm. Intuitively, ν
takes values in [0, αm], to penalize the power assigned by
AP m when it is about to violate the backhaul constraint.
Similarly, λ take values in [0,∞] which corresponds to the
inverse of the water level. The term tmkn can be interpreted
as prices: the larger the effect of interference caused by Pmkn,
the higher tmkn which will lower the allocated power for AP
m, if the price of using link (m, k, n) is too high, zero power
will be allocated to that link.

This KKT system can be solved by fixing the interference of
other links and calculate the appropriate dual variables (λ,ν)
and Pmkn. We then update the terms tmkn and Imkn according
to the new P and repeat this process until convergence. If

AP m is not power constrained or backhaul constrained, its
corresponding dual parameters will be zero (λm = 0 and νm =
0). The feasibility of the sum power and sum rate constraints
at each AP can be described by the following two equations:

Pmax,m ≥
∑
n,k

(
αk − νm
tmkn − λm

− Imkn + σ2

Gmkn

)+

, (15)

Bmax,m ≥
∑
n,k

log

(
1 +

PmknGmkn

Imkn + σ2

)
. (16)

Finding the optimal set of λ and ν could be done by
using a two-dimensional search or classic constrained opti-
mization techniques such as subgradient method or augmented
Lagrangian but this is computationally intensive and might not
be practical for large problem sizes [25].

V. PROPOSED ALGORITHM

We note that both the sum power and sum rate constraints
are functions of powers Pmkn. Fixing Imkn and tmkn, the
power is a monotonic function of λ when ν are fixed and
vice versa. The rate Rmkn is also a monotonic function of
power Pmkn when Imkn is fixed and therefore is completely
determined by the dual variables.

Complementary slackness in constrained optimization states
that for inequality constraints fi(x) ≤ 0 that are tight with
equality, the associated dual variable is non-zero [26]. Using
this result, at a local optimum each base station could be either
power constrained or rate constrained, so we can perform our
search on a single dual variable via bisection instead of a two
dimensional search.

Searching over the dual variable for power λm and setting
νm = 0 with the termination condition that either the power-
allocated is within ϵ of Pmax,m or the rate allocated is within
ϵ of Bmax,m. In the case that the base station is both power
and backhaul constrained, the achieved rate will be the same
as when searching over two dual variables.

The algorithm to solve the WSR problem is listed as
Algorithm 1. The innovation is the bisection search as detailed
in Algorithm 2. As mentioned earlier, it is strictly suboptimal
for an AP to transmit to two users on the same subcarrier
(the power allocated to the weaker user could be transferred



to stronger user). However, since our solution is sub-optimal,
to ensure that the final solution has each AP transmitting to
one user on each subchannel, we incorporate the following
rule after the waterfilling step: for AP m = m0 only the user
k = k0 allocated with the most power Pm0,k0,n0

= Pmax
m0,n0

is allowed to transmit, other transmit powers for users on the
same subchannel n = n0 are set to 0:

Pm0,k,n0
=

{
Pmax
m0,n0

, if k = k0.

0, otherwise.
(17)

Algorithm 1 Improved Iterative Water-filling Algorithm with
Backhaul

1: Initialize P , tmkn

2: loop until tmkn converges
3: loop until P converges
4: for AP m = 1 · · ·M do
5: Calculate Imkn according to (4).
6: Obtain λm via bisection search in Algorithm

2.
7: Calculate P using (14).
8: Update P according to (17).
9: end for

10: end loop
11: Update tmkn according to (11).
12: end loop

Algorithm 2 Bisection Search of λm
1: Fix tmkn and Imkn.
2: Initialize λm,min, λm,max, λm.
3: loop until Bmax,m−Rtotal,m ≤ ϵ or Pmax,m−Ptotal,m ≤
ϵ

4: Calculate Pmkn from (14) and update Ptotal,m.
5: Calculate Rmkn from (3) and update Rtotal,m.
6: if Ptotal,m > Pmax,m or Rtotal,m > Bmax,m then
7: λm,min = λm.
8: λm = (λm,min + λm,max)/2.
9: else

10: λm,max = λm.
11: λm = (λm,min + λm,max)/2.
12: end if
13: end loop

The algorithm allows each base station m to update its own
power allocations based on measuring the interference Imkn

and the latest price values tmkn updated in the outer loop as
shown in Algorithm 1. The interference can be measured by
each AP and only the prices tmkn need be exchanged leading
to an essentially decentralized implementation.

As stated in [22], a convergence proof for iterative
waterfilling-like algorithms is difficult in general but conver-
gence can be guaranteed by slowing down the update:

tnewmkn = βtoldmkn + (1− β)t̂mkn (18)

for some 0 < β < 1.

VI. NUMERICAL SIMULATIONS

In this section we present the results of simulations to
illustrate the efficacy of the proposed algorithm in Section V.
The simulation comprises small cell network with M = 3 AP
and K = 10 users distributed randomly in a darea = 500 m
square area. There are N = 16 orthogonal subchannels with
the fading model as described in Section II. Each small cell
has a limited transmit power of Pmax,m = 24 dBm, each
subchannel has a bandwidth of 15 kHz, the user equipment
noise figure is 9 dB, the noise power spectral density is -174
dBm/Hz for the additive Gaussian noise and the variance of
the Log Normal Shadowing is σs = 10, β = 0.9, the internal
wall partition loss is W = 5 dB, penetration loss of an outdoor
wall is set to L = 10 dB with probability 0.8 and L = 2 dB
with probability 0.2, qmk is fixed at 1, ϵ = 10−4 and the
maximum number of iterations of outer loop is set to be 200.
We set all the weights αk = 1 so all users have the same
priority.

We compare the proposed algorithm (hereby denoted as
IIWFB: Improved Iterative Waterfilling with Backhaul) with a
baseline greedy subchannel allocation scheme which allocates
each subchannel to the user and AP with the strongest channel.
Each AP then performs bisection search detailed in Algorithm
2 to calculate the appropriate water level for both power and
backhaul feasibility. This approach has no interference but
only has a frequency reuse factor of fr = 1

3 . We define
frequency reuse factor as:

fr =
Nactive

NM
, (19)

where Nactive = ∥Pmkn > 0∥ is the number of non-zero
power allocations.

Figure 1 plots the WSR versus SNR for different values of
Bmax,m. As is clear, the proposed algorithm shows significant
gains in spectral efficiency. In Figure 2 we see the achieved
sum rate versus the total amount of backhaul available in the
system Btotal =

∑M
∀m=1Bmax,m. Since the transmit power is

fixed at 24 dBm each cell, as the backhaul capacity increases,
the system becomes power constrained (i.e. more power is
needed to achieve the total backhaul capacity). For a system in
the backhaul limited regime (Bmax,m < 20 (bits/s/Hz) in this
simulation), the proposed algorithm achieves close to the total
backhaul available. In the power-limited regime (Bmax.m >
20 (bits/s/Hz) in this simulation), the algorithm behaves as the
standard Improved Iterative Waterfilling algorithm. However,
again, the significantly improved performance over a naive
scheme is clear.

The significant increase in spectral efficiency can be at-
tributed to the frequency reuse achieved by the algorithm -
as is shown in Figure 3. Based on system fading conditions
and locations of AP and users, the algorithm will find the
optimum level frequency reuse.

VII. CONCLUSION

In this paper we studied joint user scheduling, cell as-
sociation, spectrum allocation and power control for single
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antenna downlink transmission with carrier aggregation. The
complementary slackness property for per AP sum rate and
the sum power constraint allows for a simple computation
of the optimal dual variables via bisection which allows for
efficient computation of locally optimum weighted sum rate
utility. Further, the algorithm allows for a fairly distributed
implementation with the interference measured in real time
and requiring only exchange of the pricing information that
sets the water level.

The dynamic frequency reuse property of this algorithm
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Fig. 3. Plot of Frequency Reuse Factor versus Bmax,m for SNRdB = 10.

suggests that given a specific fading environment, we can use
this algorithm to determine which links are weakly coupled by
mutual interference. Future work should investigate efficient
means of clustering cells and links to reduce overhead needed
to synchronize the prices tmkn and also quantify the cost of
the overhead transmissions.
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